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Abstract 

In this paper we give some example of linear, linearizable and non-linearizable Poisson-Lie 
structures. We show that any Poisson-Lie tensor P on a Lie group G such that .q* is reductive 
is analytically linearizable, this property being not always satisfied by a general Poisson tensor. 
We also give examples of linearizable and non-linearizable exact Poisson-Lie structures on some 
nilpotent Lie groups. 
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1. Introduction 

Let M be a smooth manifold and P be a Poisson tensor on M: P is a skewsymmetric 

contravariant 2-tensor field satisfying [P, P] = 0 where [ , ] denotes the Schouten bracket 

which is the natural extension to skewsymmetric contravariant tensor fields of the bracket 

of vector fields. Assume that P (x) = 0 and denote by {x I , . . . ,  x n } some local coordinates 

in a neighbourhood of x. Then {Ck j = 0 p i j / O x  k Ix } defines the structure constants of a Lie 

algebra b called the l inear approximation [8] of the structure P at the point x. 

We may ask whether a given Poisson structure in a neighbourhood of a point where it 

vanishes is isomorphic to its linear approximation at that point. If so, we shall say that the 

Poisson structure is linearizable. 

The first result in this direction is due to V. Arnold who showed that any Poisson struc- 

ture such that its linear approximation is the non-trivial two-dimensional Lie algebra, is 
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linearizable. Weinstein [8] showed that a Poisson structure such that its linear approxi- 

mation is semisimple, is formally linearizable. Conn [2] proved that if furthermore the 

Poisson structure is analytic, it is analytically linearizable. Dufour [4] showed that the 

semisimplicity is not necessary. Molinier [6] showed that any Poisson structure such that 

its linear approximation is a direct sum of a semisimple ideal and of  ~,  is analytically 

linearizable. 

We are interested in this paper in the linearizability of some particular Poisson tensors 

vanishing at a point: the Poisson-Lie  tensors on a Lie group G. One says that a Poisson 

tensor P on G is a Poisson-Lie tensor if it is multiplicative, i.e. if 

P(xy)  = Lx,  P(y)  + R~,,P(x), 

where Lx (resp. Rx) denotes the left (resp. right) translation by x in G. Such a tensor clearly 

vanishes at e, the neutral element of G. A group G endowed with such a P is called a 

Poisson-Lie group (G, P). 

Let us recall Drinfeld 's  results [3]: When G is connected and simply connected, there is 

a bijection between the Poisson-Lie  structures on G and the bialgebra structures on the Lie 

algebra g of G. A bialgebra structure on a Lie algebra .q is given by a map p • g --~ A2!X 

which is a coboundary (i.e. p([X, Y]) = ad X ( p ( Y ) )  - ad Y ( p ( X ) )  YX,  Y ~ t.L where ad 

is the adjoint representation extended to A2~,~) and which is such that the dual map defines a 

Lie algebra structure on the dual space ,q*. We denote this bialgebra structure on ~.1 by (~, p) 

or (a, ~*). Recall that (g, fC) is a Lie bialgebra if and only if fl.L ~,~*) is a Lie bialgebra. 

Explicitly, the correspondence runs as follows: if P is a Poisson-Lie  tensor on G, p : ~ --~ 

A2~.~ is defined by the Lie derivative of P at e: p ( X )  = (~.xP)(e) where ~" is any vector 

field dual to p, is the linear approximation of  P at e. 

On the other hand we have: 

L e m m a  1.1. The Poisson structure on G is obtained fron the Lie bialgebra structure p on 

t~by 

e adX - 1 
P(expX)  = RexpX, ad~--~--p(X) YX E ~.t. 

Hence, a Poisson-Lie  structure on a connected and simply connected Lie group G is 

determined by its linear approximation fi = .q*. We study the linearizability of  such Poisson-  

Lie structures (linearizability will be in a neighbourhood of  the neutral element of  G). 

In Section 2, we show that any Poisson-Lie  tensor on a connected and simply connected 

Lie group G such that the linear approximation ,q* is reductive, is analytically linearizable. 

We give an example of  a non-linearizable Poisson structure on [~n whose linear approxima- 

tion is reductive. We also give some more general results on Poisson-Lie  structures whose 

linear approximation are a direct sum with a semisimple factor, and some more general 

remarks on Poisson structures whose linear approximations are a semi-direct sum with a 

semisimple factor. 
In Section 3, we give examples of  linearizable and non-linearizable exact Poisson-Lie  

structures on some nilpotent Lie groups. Recall that a Poisson-Lie  structure P on G is said 



48 v. Chloup-Arnould/Journal of Geometry and Physics 24 (1997) 46-52 

to be exact if 

P ( x )  = Lx ,  Q -  Rx ,  Q (x E G), 

where Q in a skewsymmetric 2-tensor on the Lie algebra ~q. The condition that P is a Poisson 
tensor is equivalent to the requirement that [Q, Q] 6 A3(.q) inv. 

The results presented here were part of author's Ph.D. Thesis [1]. 

2. Poisson-Lie tensor in the reductive case 

Let G be a Lie group and .q be the associated Lie algebra. 
We are going to study the Poisson-Lie tensors on G which induce on .q* a structure of 

reductive Lie algebra, i.e..q* = .ql @ ~ is a direct sum with ~ql a semisimple ideal and ,~ an 

abelian ideal. 
Thus we study the Lie bialgebras (.q, .q*) for such a .q*, or equivalently, the Lie bialgebra 

(.q*, .q). We shall denote by q the corresponding cocycle on .q*; it is defined by q : ~* --~ A2.q * 
with (q (r/), X/x  Y) = (r/, [X, Y]). To determine such a q, we observe that its restriction to 

.ql gives a cocycle on a semisimple algebra, hence a 1-coboundary. We also have: 

L e m m a  2.1. I f  .ql is a semisimple Lie algebra, then (A2ql) inv~ql = 0. 

From these observations, we easily get: 

Proposition 2.2. Consider a Lie algebra .q* such that .q* = gl • ~,)~ is the direct sum with 

.ql a semisimple ideal. Then any 1-cocycle q on ~* can be written as 

q ( X , a ) = [ ( X , a ) , Q ] + ~ ( a )  Y X c . q l  ' ¢ a E , ~ ,  

where Q E A2(.ql ~ )  and ~ : ,qt ~ A2(.ql ~ )  is a Chevalley 1-cocycle on ~ with values 
in A2(gl ~ .~l) inv-qt 

Denoting by ~ 11 the part  o f  ~ in A 2.q 1, q 12 the part  o f  ~ in .q I ® !)t and ~22 the part  o f  q 

in A2,~, we obtain: 

_ ~11 = O, 

- , ~ 1 2  = 0 ,  

_ ~22 : ,~ __+ A2(~)  is a 1-cocycle. 

Corollary 2.3. Consider a Lie bialgebra structure (.q, ~*) such that .q* = q~ l • ¢.1t is the 

direct sum with ,ql a semisimple ideal. Write .q = f ~ (~ (direct sum o f  vector spaces) where 

f = {U 6 .ql(U, a) = O V a  6 ~ } a n d ( ~  = {s ~ .~t(s,X) = 0 ¥ X  6 ~l}. Then f and 6~ are 

Lie subalgebras o f  q. 

Theorem 2.4. Let G be a Lie group with Lie algebra .q. Then any Poisson-Lie tensor on G 

which induces on q~* a structure o f  reductive Lie algebra, i.e..q* = .ql • ,~ is the direct sum 

where q l a semisimple ideal and ~ an abelian ideal, is analytically linearizable. 
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Proof We use the same notat ions as in Corollary 2.3. Wri t t ing  that p* is a Lie bracket on 

.q., p = t  [ , ].ql(~!l ~ we get 

(p(U, s), (X, a) A (Y, b)) = (U, [X, Y]) 

U ~ I ,  s o ( g ,  X , Y ~ g t ,  a, b E ~ l .  

So p(f) C A2f and p((S~) = {0}. 

Since we consider  a Po i s son-L ie  tensor P ,  it is multiplicative,  so P (xy) = Lx.  P(y )  + 

Rr ,  P(x) .  

Locally in a neighbourhood of  e in G, any g 6 G can be written g = exp Uexp s with 

U ~ l a n d s  ~ (sL Thus 

P (g) = P (exp Uexp  s) = Rexp s .  R e x p  U .  - -  

e a d  U _ 1 

ad U 
p(U) .  

If { U l, • • •, Un } is a base of  f and if {st, -- •, Sr } is a base of (s~, the local coordinates on G will 

be given by (x l , . - . ,  x" ,  x "+l  , . . . ,  x ' ' + ' )  i f g  = exp(y] l< i< , ,  xiUi)  exp(Y-]l<i< r x"+isi). 

Since f is a Lie subalgebra of  ~ (see Corollary 2.3), we have in these local coordinates:  

P(g)  = P(exp  Uexp s) = 
y ~  pi j  0 0 

• A - -  

t<_i,j<n OXllexpUexps OXJlexpUexps 

and pi j  depends on x k for k = 1, • - - ,  n. 

We define P '  = Z l<_i.j <_n p i j  O/OX i/~ O/OX i a Poisson tensor on ~n.  We have pf(0)  = 0 
ij ~ tj k and C k 0 P " / O x  I0 are the structure constants  of the Lie algebra .ql which is semisimple.  

From the theorem of  l inearizat ion of Conn  [2] in the analytic case, P '  is l inearizable by an 

analytic change in the variables (x I , . - . ,  xn).  Hence,  by the same change in (x 1 , . . . ,  x")  

and the identity on (x n+t , •. •, xn+r), P is linearized. 

R e m a r k  2.5. We are going to see that the result does not always hold for general  Poisson 

tensors (hence, the stress on the Po i s son-Lie  condi t ion in Theorem 2.4). 

Let P be a Poisson structure on a manifo ld  M, which vanishes at a point  3' c M and such 

that it, its l inear approximat ion at x, is reductive, i.e. fi ---- ~ 1 • :)t with .q I semisimple  and :~ 

abelian, with dim !)t > 2. The case where dim 91 = l, i.e. :1t = ~,  is known [6] and in that 

case P is analytical ly linearizable.  

We consider  P ,  a Poisson tensor on R n+r (where n = dim ~.~j and r = dim r)t, r >_ 2), 

vanishing at 0 and such that the l inear  structure is .ql • ~)t, given by 

piJ(x)  = Z C~Jxk + Bij '  

l < k < n  

i) 
where the C k are the structure constants  of  b = .ql G ,qt in the basis )e l ,  - . . ,  en+r( where 

ei E .ql Vi < n and ej 6 ,~t 'v'j > n; and where B ij are the non- l inear  terms of  pij ,  and we 

assume that B ij = 0 for i or j _< n. 
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Then if B is not zero, the maximal dimension of  the symplectic leaves for the linear 

structure is different from the maximal dimension of  the symplectic leaves for P,  so P is 

not linearizable. 

Theorem 2.6. Let G be a Lie group with Lie algebra ~q. Any Poisson-Lie tensor P on G 

such that ,q*, the dual of,q, is written ,q* = .ql • !~ the direct sum where ~l is a semisimple 

ideal o f  dimension n and 9~ is an ideal o f  dimension r is linearizable i f  and only ~f the 

induced Poisson structure on the group corresponding to 05 = {s E ,ql (X, s) = 0 YX E .q! } 

(which is a Lie subalgebra) is linearizable. 

Furthermore, one can seperate the variables, i.e. f ind local coordinates (x I , • . . ,  x n+r) 

and write P = L @ T where L is a linear Poisson tensor corresponding to the structure 

constants o f  the Lie algebra .ql, L = Zl<_i,j ,k<_n CkJ xkO/OXi m O/OX j, and where 

T = y ~  TiJ(xn+l ' .. xn+r ) 0 0 
Ox t Ox j • 

n+l<i,j<n+r 

The proof is analogous to the proof of Theorem 2.4. 

R e m a r k  2.7. This result does not always hold for general Poisson structures. 

Using the fact that H2Cql t><.~, p,  V) = H2  _equivariant(!)~, P2, V) which is a particular 

case of  the theorem of  Hochschild and Serre [5] (where b = .ql x . q l  denotes the semi-direct 

sum of  a semisimple Lie algebra .qj and of  an ideal ,~), we get: 

Let A be a Poisson structure on a manifold M, vanishing at a point x and such that the 

associated linear structure at x is written ~ = ~ql ~<.~rt, the semi-direct sum of  a semisimple 

Lie algebra of dimension n and of an ideal of dimension r. 

Then there exist formal coordinates (x I , • • •, x n , x n+j , • • , ,  x n+r) in a neighbourhood of 

x such that: 

{ x i , x  j } = 

{X i, X j } = 

{X i, X j } = 

Z C~ jxk  for i and j < n, 

l < k < n  

Z C~Jx k f o r /  6 { 1 , . . . , n }  

n+l<k<_n+r 

and j ~ { n + l , . . . , n + r } ,  

Z CkJxk ~- o i J ( x l '  " ' ' ' x n ' x n + l '  " ' ' ' x n + r )  

n+l<_k<_n+r 
f o r / a n d j  ~ { n + l , . . - , n + r } ,  

where the Cff are the structure constants of  the Lie algebra ,ql ~<!R. 

This result can be found in [7]. 
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3. Exact Poisson-Lie structures in the nilpotent ease 

51 

In this section we study the linearizability of some Poisson-Lie  structures on a given Lie 

group G. The stress, here is on G and not on ~*. 

Consider an exact Poisson-Lie  structure on a Lie group G, it is given by p,- = L~, Q - 

R~, Q (x E G), where Q is skewsymmetric 2-tensor on the Lie algebra ~.1 such that [ Q, Q ] c 
A 3 (~.~) inv" 

Lemma 3.1. Denote by {Xl, . . . ,  Xn} a basis of ~.l and by {x 1, - . .  , x n } the local coordo- 

nates in the logarithmic chart. An exact Poisson-Lie tensor P on the Lie group G is a fi)rmal 
series composed with monomials in {x 1 . . . ,  x n } of odd degree and is given by: 

P(expX)  = 
j 0 0 

l'<k,l<n I<i<n IEj<_n 

+ ~  (adX X~)i(ad2 X X/)jOx'O A OxJ + " "  

Assume now that G is nilpotent, then P is polynomial.  

Recall the following definition: 

Definition 3.1. Let .q be a nilpotent Lie algebra. Define ,qi+l = [.qi, c,.l] with the convention 

that 90 = .q. Then .q is a m-step nilpotent algebra if ~.]m = 0. 

One can easily see that: 

Proposition 3.2. Any exact Poisson-Lie tensor on a two-step nilpotent Lie group is linear. 

Proposition 3.3. Any exact Poisson-Lie tensor on a three-step nilpotent Lie group af di- 
mension less or equal to 6 is linearizable. 

Proof P is composed of its linear part and polynomials  in {x j , .. -, x 6} of degree 3. The 

idea is to eliminate the polynomials  of  degree 3 by a change of  coordinates of  the form: 

v i = x i _4_ f i  (X) where f i  is a homogeneous polynomial  of  degree 3. We determine the f i  

solutions of 

. [ O p  ik 

- E OP[( ) f k (x )=O ¥ i , j  
Ox k 

1 < k < n  

(1) 

For each of the three-step nilpotent Lie group of  dimension less or equal to 6, we find 

solutions of  these equations. [] 
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R e m a r k  3.4. We show now that there exist exact Poisson-Lie tensors on a four-step nilpo- 

tent Lie group (of dimension 5) which are not linearizable. 

Consider the algebra g = L4 =)X1,  X2, X3, X4, X5( where the non-zero brackets are 

given by: 

[XI, X2] ~-- X3; [XI, X31 : X4; [X1, X4] : X5. 

This is a four-step nilpotent Lie algebra of dimension 5. 

First, we study the condition [Q, Q] ad-invariant: 

Q12 = O, 

Q13 : 0, 
[X, [Q,  Q]] = 0 ¥ x  ~ ,~ ~, ~" Q14 : 0, 

Q15Q23 : 0. 

Then consider the particular case where: 

(1) 

(2) 

Q = 023x2 A x3, i.e. 0 ij : 0 except 0 23. Then [Q, Q] = 0 but P is not linearizable. 

(Eq. (1), in this case, has no solution). 

Q23 = 0. Then P is linearizable. 

(A solution of Eq. (1) is given by f l  = f2  : f3  = f 4  : 0 and f5  = l ( x l ) 2 x 3 ) .  

Hence, we get: 

Proposition 3.5. On the connected and simply connected Lie group of Lie algebra L4, there 

exist some exact Poisson-Lie structures (G, P) where P is given by P (x) = Lx. Q - Rx. Q 

such that 

- [Q, Q] = 0 and P is linearizable, 

- [Q, Q] = 0 and P is non linearizable, 

- [Q, Q] is ad-invariant and P is linearizable. 
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